Transhumanist FAQ Version 3

From H+Pedia
Revision as of 07:54, 28 February 2016 by Davidwwood (talk | contribs) (Shouldn’t we concentrate on current problems?...)
Jump to: navigation, search

The Transhumanist FAQ Archived is a reference copy of the content on the Humanity+ website as of February 2016.

For an evolved version, that also contains hyperlinks to other H+Pedia material, see here.

(Page under construction)

Contents

Introduction

The Transhumanist FAQ was developed in the mid-1990s and in 1998 became a formal FAQ through the inspirational work of transhumanists, including Alexander Chislenko, Max More, Anders Sandberg, Natasha Vita-More, Eliezer Yudkowsky, Arjen Kamphius, and many others. Several people contributed to the definition of transhumanism, which was originated by Max More. Greg Burch, David Pearce, Kathryn Aegis, and Anders Sandberg kindly offered extensive editorial comments. The presentation in the cryonics section was, and still is, directly inspired by an article by Ralph Merkle. Ideas, criticisms, questions, phrases, and sentences to the original version were contributed by (in alphabetical order): Kathryn Aegis, Alex (intech@intsar.com), Brent Allsop, Brian Atkins, Scott Badger, Doug Bailey, Harmony Baldwin, Damien Broderick, Greg Burch, David Cary, John K Clark, Dan Clemensen, Damon Davis, Jeff Dee, Jean-Michel Delhotel, Dylan Evans, EvMick@aol.com, Daniel Fabulich, Frank Forman, Robin Hanson, Andrew Hennessey, Tony Hollick, Joe Jenkins, William John, Michelle Jones, Arjen Kamphius, Henri Kluytmans, Eugene Leitl, Michael Lorrey, mark@unicorn.com, Peter C. McCluskey, Erik Moeller, J. R. Molloy, Max More, Bryan Moss, Harvey Newstrom, Michael Nielsen, John S. Novak III, Dalibor van den Otter, David Pearce, pilgrim@cyberdude.com, Thom Quinn, Anders Sandberg, Wesley R. Schwein, Shakehip@aol.com, Allen Smith, Geoff Smith, Randy Smith, Dennis Stevens, Derek Strong, Remi Sussan, Natasha Vita-More, Michael Wiik, Eliezer Yudkowsky, and zebo@pro-ns.net

Over the years, this FAQ has been updated to provide a substantial account of transhumanism. Extropy Institute (ExI) was a source of information for the first version of the Transhumanist FAQ, version 1.0 in the 1990s. WTA adopted the FAQ in 2001 and Nick Bostrom added substantial information about future scenarios. However, with the contributions of close to hundred people from ExI, Aleph, Transcedo, and WTA, and the UK Transhumanist Association. New material has been added and many old sections have been substantially reworked. In the preparation of version 2.0, the following people have been especially helpful: Eliezer Yudkowsky, who provided editorial assistance with comments on particular issues of substance; Dale Carrico who proofread the first half of the text; and Michael LaTorra who did the same for the second half; and “Reason” who then went over the whole document again, as did Frank Forman, and Sarah Banks Forman. Useful comments of either substance or form have also been contributed by (in alphabetical order): Michael Anissimov, Samantha Atkins, Milan Cirkovic, José Luis Cordeiro, George Dvorsky, James Hughes, G.E. Jordan, Vasso Kambourelli, Michael LaTorra, Eugen Leitl, Juan Meridalva, Harvey Newstrom, Emlyn O’Reagan, Christine Peterson, Giulio Prisco, Reason, Rafal Smigrodzki, Simon Smith, Mike Treder, and Mark Walker. Many others have over the years offered questions or reflections that have in some way helped shape this document, and even though it is not possible to name you all, your contributions are warmly appreciated.

The Transhumanist FAQ 3.0, as revised by the continued efforts of many transhumanists, will continue to be updated and modified as we develop new knowledge and better ways of accounting for old knowledge which directly and indirectly relate to transhumanism. Our goal is to provide a reliable source of information about transhumanism.

Thank you to all who have contributed in the past and to those who offer new insights to this FAQ!

General

What is transhumanism?

Transhumanism is a way of thinking about the future that is based on the premise that the human species in its current form does not represent the end of our development but rather a comparatively early phase.

Transhumanism is a loosely defined movement that has developed gradually over the past two decades. “Transhumanism is a class of philosophies of life that seek the continuation and acceleration of the evolution of intelligent life beyond its currently human form and human limitations by means of science and technology, guided by life-promoting principles and values.” (Max More 1990)

Humanity+ formally defines it based on Max More’s original definition as follows:

(1) The intellectual and cultural movement that affirms the possibility and desirability of fundamentally improving the human condition through applied reason, especially by developing and making widely available technologies to eliminate aging and to greatly enhance human intellectual, physical, and psychological capacities.

(2) The study of the ramifications, promises, and potential dangers of technologies that will enable us to overcome fundamental human limitations, and the related study of the ethical matters involved in developing and using such technologies.

Transhumanism can be viewed as an extension of humanism, from which it is partially derived. Humanists believe that humans matter, that individuals matter. We might not be perfect, but we can make things better by promoting rational thinking, freedom, tolerance, democracy, and concern for our fellow human beings. Transhumanists agree with this but also emphasize what we have the potential to become. Just as we use rational means to improve the human condition and the external world, we can also use such means to improve ourselves, the human organism. In doing so, we are not limited to traditional humanistic methods, such as education and cultural development. We can also use technological means that will eventually enable us to move beyond what some would think of as “human”.

What is a posthuman?

It is sometimes useful to talk about possible future beings whose basic capacities so radically exceed those of present humans as to be no longer unambiguously human by our current standards. The standard word for such beings is “posthuman”. (Care must be taken to avoid misinterpretation. “Posthuman” does not denote just anything that happens to come after the human era, nor does it have anything to do with the “posthumous”. In particular, it does not imply that there are no humans anymore.)

Many transhumanists wish to follow life paths which would, sooner or later, require growing into posthuman persons: they yearn to reach intellectual heights as far above any current human genius as humans are above other primates; to be resistant to disease and impervious to aging; to have unlimited youth and vigor; to exercise control over their own desires, moods, and mental states; to be able to avoid feeling tired, hateful, or irritated about petty things; to have an increased capacity for pleasure, love, artistic appreciation, and serenity; to experience novel states of consciousness that current human brains cannot access. It seems likely that the simple fact of living an indefinitely long, healthy, active life would take anyone to posthumanity if they went on accumulating memories, skills, and intelligence.

Posthumans could be completely synthetic artificial intelligences, or they could be enhanced uploads [see “What is uploading?”], or they could be the result of making many smaller but cumulatively profound augmentations to a biological human. The latter alternative would probably require either the redesign of the human organism using advanced nanotechnology or its radical enhancement using some combination of technologies such as genetic engineering, psychopharmacology, anti-aging therapies, neural interfaces, advanced information management tools, memory enhancing drugs, wearable computers, and cognitive techniques.

Some authors write as though simply by changing our self-conception, we have become or could become posthuman. This is a confusion or corruption of the original meaning of the term. The changes required to make us posthuman are too profound to be achievable by merely altering some aspect of psychological theory or the way we think about ourselves. Radical technological modifications to our brains and bodies are needed.

It is difficult for us to imagine what it would be like to be a posthuman person. Posthumans may have experiences and concerns that we cannot fathom, thoughts that cannot fit into the three-pound lumps of neural tissue that we use for thinking. Some posthumans may find it advantageous to jettison their bodies altogether and live as information patterns on vast super-fast computer networks. Their minds may be not only more powerful than ours but may also employ different cognitive architectures or include new sensory modalities that enable greater participation in their virtual reality settings. Posthuman minds might be able to share memories and experiences directly, greatly increasing the efficiency, quality, and modes in which posthumans could communicate with each other. The boundaries between posthuman minds may not be as sharply defined as those between humans.

Posthumans might shape themselves and their environment in so many new and profound ways that speculations about the detailed features of posthumans and the posthuman world are likely to fail.

What is a transhuman?

In its contemporary usage, “transhuman” refers to an intermediary transition between the human and a possible future human (Human 2.0) or the posthuman [see “What is a posthuman?”]. One might ask, given that our current use of e.g. medicine and information technology enable us to routinely do many things that would have astonished humans living in ancient times, whether we are not already transhuman? The question is a provocative one, but ultimately not very meaningful; the concept of the transhuman is too vague for there to be a definite answer.

A transhumanist is simply someone who advocates transhumanism [see “What is transhumanism?”]. It is a common error for reporters and other writers to say that transhumanists “claim to be transhuman” or “call themselves transhuman”. To adopt a philosophy which says that someday everyone ought to have the chance to grow beyond present human limits is clearly not to say that one is better or somehow currently “more advanced” than one’s fellow humans.

The etymology of the term “transhuman” goes back to the futurist FM-2030 (also known as F. M. Esfandiary), who introduced it as shorthand for “transitional human”. Calling transhumans the “earliest manifestation of new evolutionary beings”. F. M. Esfandiary had written a chapter using the term “transhuman” in a 1972 book, and went on to develop a set of transhumanist ideas in which transhuman was a transition from human to posthuman, yet he never referred to them as “transhumanism”. Esfandiary’s approach was more literary than academic, even though he taught at the New School for Social Research in New York in the 1960s. Starting in 1966, while teaching classes in “New Concepts of the Human”, he outlined a vision of an evolutionary transhuman future. He also brought together optimistic futurists in a loosely-organized group known as UpWingers. In his 1989 book, Are You a Transhuman?, he defined a transhuman as a “transitional human,” whose use of technology, way of living, and values marked them as a step toward posthumanity. FM-2030’s writing and social activity importantly underscored the practical elements of the philosophy. The idiosyncratic and personal nature of FM-2030’s transhuman was displayed in his book, which contained extensive questionnaires, then rated the reader as more or less transhuman. Some of his measures included how much someone traveled, what alterations they had made to their body (even though the existing technology remained primitive), the degree to which they rejected traditional family structures and exclusive relationships, and so on.It is unclear why anybody who has had enhancement body parts or a nomadic lifestyle is any closer to becoming a posthuman than the rest of us; nor, of course, are such persons necessarily more admirable or morally commendable than others. In fact, it is perfectly possible to be a transhuman – or, for that matter, a transhumanist – and still embrace most traditional values and principles of personal conduct.

The writings of Natasha Vita-More (k/k/a Nancie Clark) in authoring the Transhuman Manifesto in 1983 offered a different perspective on the transhuman, although highly influenced by FM-2030’s vision. The difference being that Vita-More sought to build a social/cultural movement for life extension and human enhancement rather than following a prescribed ideological stance. “Let us choose to be transhuman not only in our bodies, but also in our values. Toward diversity, multiplicity. Toward non-partisan ideology (transpolitics, transpartisan, transmodernity). Toward a more humane transhumanity.” In 1997, a later version of the manifesto was released first onto the Internet and signed by hundreds of creative thinkers and then placed aboard the Cassini Huygens spacecraft on its mission to Saturn.

References:

FM-2030. Are You a Transhuman? (New York: Warner Books, 1989).

More, M. & Vita-More, N. (Eds.) The Transhumanist Reader: Classical and Contemporary Essays on the Science, Technology, and Philosophy of the Human Future. (New York: Wiley-Blackwell Publishing, 2013).

Vita-More, N. The Transhuman Manifesto. In ARTISTS’ MANIFESTOS. (New York: Penguin Modern Classics, 2009).

Practicalities

What are the reasons to expect all these changes?

Take a look around. Compare what you see with what you would have seen only fifty years ago. It is not an especially bold conjecture that the next 50 years will see at least as much change and that the state of technology in the mid-21st century will be quite wondrous by present standards. The conservative projection, which assumes only that progress continues in the same gradual way it has since the 17th century, would imply that we should expect to see dramatic developments over the coming decades.

This expectation is reinforced when one considers that many crucial areas seem poised for critical breakthroughs. The World-Wide Web is beginning to link the world’s people, adding a new global layer to human society where information is supreme. The Human Genome Project has been completed, and the study of the functional roles of our genes (functional genomics) is proceeding rapidly. Techniques for using this genetic information to modify adult organisms or the germ-line are being developed. The performance of computers doubles every 18 months and will approach the computational power of a human brain in the foreseeable future. Pharmaceutical companies are refining drugs that will enable us to regulate mood and aspects of personality with few side effects. Many transhumanist aims can be pursued with present technologies. Can there be much doubt that, barring a civilization-destroying cataclysm, technological progress will give us much more radical options in the future? [See also “Won’t these developments take thousands or millions of years?”]

Molecular manufacturing has the potential to transform the human condition. Is it a feasible technology? Eric Drexler and others have showed in detail how machine-phase nanotechnology is consistent with physical laws and have outlined several routes by which it could be developed [see “What is molecular nanotechnology?”]. Molecular manufacturing might seem incredible, maybe because the eventual consequences seem too overwhelming, but nanotechnology experts point out that there currently exists no published technical critique of Drexler’s arguments. More than ten years after the publication of Nanosystems, nobody has yet been able to point to any significant error in the calculations. Meanwhile, investment in the development of nanotechnology, already billions of dollars annually worldwide, is growing every year, and at least the less visionary aspects of nanotechnology have already become mainstream.

There are many independent methods and technologies that can enable humans to become posthuman. There is uncertainty about which technologies will be perfected first, and we have a choice about which methods to use. But provided civilization continues to prosper, it seems almost inevitable that humans will sooner or later have the option of becoming posthuman persons. And, unless forcibly prevented, many will choose to explore that option.

References:

Drexler, E. Nanosystems: Molecular Machinery, Manufacturing, and Computation. (New York: John Wiley & Sons, 1992).

Won’t these developments take thousands or millions of years?

It is often very hard to predict how long a certain technological development will take. The moon landing happened sooner than most people had expected, but fusion energy still eludes us after half a century of anticipation. The difficulty in forecasting the timing lies partly in the possibility of unexpected technical obstacles and partly in the fact that the rate of progress depends on levels of funding, which in turn depends on hard-to-predict economic and political factors. Therefore, while one can in many cases give good grounds for thinking that a technology will eventually be developed, one can usually only make informed guesses about how long it will take.

The vast majority of transhumanists think that superintelligence and nanotechnology will both be developed in less than a hundred years, and many predict that it will happen well within the first third of this century. (Some of the reasons for holding these opinions are outlined in the sections about these two technologies.) Once there is both nanotechnology and superintelligence, a very wide range of special applications will follow swiftly.

It would be possible to give a long list of examples where people in the past have solemnly declared that something was technologically absolutely impossible,

“The secrets of flight will not be mastered within our lifetime – not within a thousand years.” (Wilbur Wright, 1901),

or socially irrelevant,

“There is no reason why anyone would want a computer in their home.” (Ken Olsen: President, Chairman and Founder of Digital Equipment Corporation, 1977)

– only to see it happen few years later. However, one could give an equally long list of cases of predicted breakthroughs that failed to occur. The question cannot be settled by enumerating historical parallels.

A better strategy is to look directly at what a careful analysis of the underlying physical constraints and engineering constraints might reveal. In the case of the most crucial future technologies – superintelligence and molecular manufacturing – such analyses have been done. Many experts believe that these will likely be achieved within the first several decades of the 21st century. Other experts think it will take much longer. There seems to be more disagreement about the feasibility and time-frame of superintelligence than of nanotechnology.

Another way of forming a view of where we are headed is by looking at trends. At least since the late 19th century, science and technology, as measured by a wide range of indicators, have doubled about every 15 years (Price 1986). Extrapolating this exponential rate of progress, one is led to expect to see dramatic changes in the relatively near future. It would require an abrupt reversal of current trends, an unexpected deceleration, in order for the changes that many transhumanists foresee not to happen within the 21st century.

References:

The Foresight Institute. “Erroneous Predictions and Negative Comments Concerning Scientific and Technological Developments.” (2002). http://www.foresight.org/News/negativeComments.html

Price, D. J. Little Science, Big Science …and Beyond. (New York: Columbia University Press, 1986).

How can I use transhumanism in my own life?

While transhumanism has been known to cross over with academic agendas, ethical philosophies, political causes, and artistic movements, transhumanism is not a lifestyle, a religion, or a self-help guide. Transhumanism can’t tell you what kind of music to listen to, which hobbies to pursue, whom to marry or how to live your life, any more than, say, being a member of Amnesty International or studying molecular biology could tell you these things.

Depending on your situation and your needs, you might or might not find some of the currently available human modification or enhancement options useful. Some of these are commonplace – exercise, healthy diet, relaxation techniques, time management, study skills, information technology, coffee or tea (as stimulants), education, and nutritional supplements (such as vitamins, minerals, fatty acids, or hormones). Others you might not have thought of, such as getting a cryonic suspension contract [see “What is cryonics? Isn’t the probability of success too small?”], or chewing nicotine gum for its nootropic effects. Still others – for instance pharmacological mood drugs or sex reassignment surgery – are suitable only for people who have special difficulties or needs.

If you want to learn more about transhumanist topics, meet like-minded individuals, and participate in some way the transhumanist effort, see [“How can I get involved and contribute?”]

What if it doesn’t work?

Success in the transhumanist endeavor is not an all-or-nothing matter. There is no “it” that everything hinges on. Instead, there are many incremental processes at play, which may work better or worse, faster or more slowly. Even if we can’t cure all diseases, we will cure many. Even if we don’t get immortality, we can have healthier lives. Even if we can’t freeze whole bodies and revive them, we can learn how to store organs for transplantation. Even if we don’t solve world hunger, we can feed a lot of people. With many potentially transforming technologies already available and others in the pipeline, it is clear that there will be a large scope for human augmentation. The more powerful transhuman technologies, such as machine-phase nanotechnology and superintelligence, can be reached through several independent paths. Should we find one path to be blocked, we can try another one. The multiplicity of routes adds to the probability that our journey will not come to a premature halt.

There are ways to fail completely, namely if we succumb to an existential disaster [see “Aren’t these future technologies very risky? Could they even cause our extinction?”]. Efforts to reduce existential risks are therefore a top priority.

How could I become a posthuman?

At present, there is no manner by which any human can become a posthuman. This is the primary reason for the strong interest in life extension and cryonics among transhumanists. Those of us who live long enough to witness currently foreseeable technologies come to fruition may get the chance to become posthuman. Although there are no guarantees of success, there are some things that can be done on an individual level that will improve the odds a bit:

1. Live healthily and avoid unnecessary risks (diet, exercise, etc.);

2. Sign up for cryonics;

3. Keep abreast of current research and save some money so that you can afford future life-extension treatments when they become available;

4. Support the development of transhuman technologies through donations, advocacy, investment, or choosing a career in the field; work to make access more universal and to make the world safer from existential risks [see “Aren’t these future technologies very risky? Could they even cause our extinction?”];

5. Join others to help promote transhumanism.

Meanwhile, we can enjoy and make the most of the opportunities that exist today for living worthwhile and meaningful lives. If we compare our current lot with that of our historical ancestors, most (at least those of us who don’t live in the least developed countries) will find that the material circumstances for human flourishing are the best they have ever been. In addition, we possess an unprecedented accumulation of cultural and intellectual treasures whereby we can enrich our experiences and broaden our horizons.

Won’t it be boring to live forever in a perfect world?

Why not try it and see?

“Perfection” is a vague and treacherous word. There is considerable disagreement among transhumanists about what kind of perfection is attainable and desirable, either in theory or in practice. It is probably wiser to speak of improving the world, rather than making it “perfect”. Would it be boring to live for an indefinitely long time in a greatly improved world? The world could surely be improved over the way it is now, including becoming less boring. If you got rid of the pain and stress associated with, say, filling out annual tax returns, people would probably not sit around afterward saying: “Life feels meaningless now that I no longer have income tax forms to fill out.”

Admittedly, material improvements to the environment may not, in themselves, be sufficient to bring about lasting happiness. If your accustomed fare is bread and water, then a box of cookies can be a feast. But if every night you eat out at fancy restaurants, such fine fare will soon seem ordinary and normal; and any lesser feast, such as a box of cookies, would be insulting by comparison. Some cognitive scientists speculate that we each have a “set point” of happiness, to which we soon return regardless of changes in the environment. There may be considerable truth to the folk wisdom that an expensive new car does not make you happier (or rather, it makes you happier, but only temporarily). In some ways, human minds and brains are just not designed to be happy. Fortunately, there are several potential viewpoints from which to go about addressing this challenge.

Apes engage in activities that we, as humans, would find repetitive and dull. In the course of becoming smarter, we have become bored by things that would have interested our ancestors. But at the same time we have opened up a vast new space of possibilities for having fun – and the new space is much larger than the previous one. Humans are not simply apes who can obtain more bananas using our intelligence as a tool. Our intelligence enables us to desire new things, such as art, science, and mathematics. If at any point in your indefinitely long life you become bored with the greatly improved world, it may only indicate that the time has come to bump up your intelligence another increment.

If the human brain has a “set point” of happiness to which it returns, maybe this is a design flaw and should be fixed – one of those things that we will end up defining as human, but not humane. It would probably be unwise to eliminate boredom entirely, since boredom can serve to prevent us from wasting too much time on monotonous and meaningless activities. But if we’re doing new things, learning, growing more intelligent, and we still aren’t happy, for no better reason than that our cognitive architecture is badly designed, then perhaps it is time to redesign it. Present clinical mood-drugs are crude, but nonetheless they can sometimes restore interest and enthusiasm for life – sometimes tiredness and despair has no interesting reason behind it and is simply an imbalance of brain chemistry. Only by compartmentalizing our thinking to a high degree can we imagine a world where there is mature molecular nanotechnology and superhuman artificial intelligence, but the means are still lacking to control the brain circuitry of boredom. Fundamentally, there is no reason why pleasure, excitement, profound well-being and simple joy at being alive could not become the natural, default state of mind for all who desire it.

Ed Regis (1990, p. 97) suggests the following points also be considered:

1. Ordinary life is sometimes boring. So what?

2. Eternal life will be as boring or as exciting as you make it.

3. Is being dead more exciting?

4. If eternal life becomes boring, you will have the option of ending it at any time.

Transhumanism is not about a fancier car, more money, or clever gadgetry, even though this is what the media presents to us as “science” and “advanced technology”; transhumanism is about genuine changes to the human condition, including increased intelligence and minds better suited to the achievement of happiness.

References:

Pearce, D. The Hedonistic Imperative. (2003) http://www.hedweb.com

Regis, E. Great Mambo Chicken and the Transhuman Condition. (Penguin Books: New York, 1990).

How can I get involved and contribute?

You can join Humanity+. The Humanity+ is a nonprofit, democratic membership organization that works to promote discussion of possibilities for the radical improvement of human capacities using technology, as well as of the ethical issues and risks involved in technological developments. It was founded in 1998 as an umbrella organization to publicize transhumanist ideas and to seek academic acceptance of transhumanism as a philosophical and cultural movement. Humanity+ organizes conferences, publishes H+ Magazine, (did published an academic journal), issues press statements, and coordinates student campus chapters and local transhumanist groups around the world. To find out about current projects and upcoming events, and to become a member, please visit the Humanity+ website.

Humanity+ has been growing since its inception and especially rapidly in the last couple of years, but the task before us is both momentous and mountainous. Your help is needed. There are myriad ways to contribute – organizing or participating in a local discussion group, writing articles or letters to the editor, making a financial contribution, spreading the word to friends and acquaintances, volunteering your skills, translating key documents into other languages, linking to Humantiy+ from your website, attending conferences and sharing your ideas, directing your research or creative activity towards transhumanist themes, to name but a few.

If you want to study transhumanist ideas in more detail, you can find some syllabi and reading lists on the website to get you started. If you want to exchange ideas with others, or just listen in to ongoing conversations, you may want to join one of the mailing lists and newsgroups maintained by Humanity+.

The coming technological transitions may be the most important challenge that humanity will ever face. The entire future of intelligent life on Earth may depend on how we handle it. If we do the right things, a wonderful posthuman future with limitless opportunities for growth and flourishing may lie ahead. If we handle it badly, intelligent life might go extinct. Don’t you want to take part and attempt to make a difference for the better?

References:

– Humanity+. http://humanityplus.org. (From this site, links to local groups and affiliated organizations can also be found.)

Society and Politics

Will new technologies only benefit the rich and powerful?

One could make the case that the average citizen of a developed country today has a higher standard of living than any king five hundred years ago. The king might have had a court orchestra, but you can afford a CD player that lets you to listen to the best musicians any time you want. When the king got pneumonia he might well die, but you can take antibiotics. The king might have a carriage with six white horses, but you can have a car that is faster and more comfortable. And you likely have television, Internet access, and a shower with warm water; you can talk with relatives who live in a different country over the phone; and you know more about the Earth, nature, and the cosmos than any medieval monarch.

The typical pattern with new technologies is that they become cheaper as time goes by. In the medical field, for example, experimental procedures are usually available only to research subjects and the very rich. As these procedures become routine, costs fall and more people can afford them. Even in the poorest countries, millions of people have benefited from vaccines and penicillin. In the field of consumer electronics, the price of computers and other devices that were cutting-edge only a couple of years ago drops precipitously as new models are introduced.

It is clear that everybody can benefit greatly from improved technology. Initially, however, the greatest advantages will go to those who have the resources, the skills, and the willingness to learn to use new tools. One can speculate that some technologies may cause social inequalities to widen. For example, if some form of intelligence amplification becomes available, it may at first be so expensive that only the wealthiest can afford it. The same could happen when we learn how to genetically enhance our children. Those who are already well off would become smarter and make even more money. This phenomenon is not new. Rich parents send their kids to better schools and provide them with resources such as personal connections and information technology that may not be available to the less privileged. Such advantages lead to greater earnings later in life and serve to increase social inequalities.

Trying to ban technological innovation on these grounds, however, would be misguided. If a society judges existing inequalities to be unacceptable, a wiser remedy would be progressive taxation and the provision of community-funded services such as education, IT access in public libraries, genetic enhancements covered by social security, and so forth. Economic and technological progress is not a zero sum game; it’s a positive sum game. Technological progress does not solve the hard old political problem of what degree of income redistribution is desirable, but it can greatly increase the size of the pie that is to be divided.

Do transhumanists advocate eugenics?

Eugenics in the narrow sense refers to the pre-WWII movement in Europe and the United States to involuntarily sterilize the “genetically unfit” and encourage breeding of the genetically advantaged. These ideas are entirely contrary to the tolerant humanistic and scientific tenets of transhumanism. In addition to condemning the coercion involved in such policies, transhumanists strongly reject the racialist and classist assumptions on which they were based, along with the notion that eugenic improvements could be accomplished in a practically meaningful timeframe through selective human breeding.

Transhumanists uphold the principles of bodily autonomy and procreative liberty. Parents must be allowed to choose for themselves whether to reproduce, how to reproduce, and what technological methods they use in their reproduction. The use of genetic medicine or embryonic screening to increase the probability of a healthy, happy, and multiply talented child is a responsible and justifiable application of parental reproductive freedom.

Beyond this, one can argue that parents have a moral responsibility to make use of these methods, assuming they are safe and effective. Just as it would be wrong for parents to fail in their duty to procure the best available medical care for their sick child, it would be wrong not to take reasonable precautions to ensure that a child-to-be will be as healthy as possible. This, however, is a moral judgment that is best left to individual conscience rather than imposed by law. Only in extreme and unusual cases might state infringement of procreative liberty be justified. If, for example, a would-be parent wished to undertake a genetic modification that would be clearly harmful to the child or would drastically curtail its options in life, then this prospective parent should be prevented by law from doing so. This case is analogous to the state taking custody of a child in situations of gross parental neglect or child abuse.

This defense of procreative liberty is compatible with the view that states and charities can subsidize public health, prenatal care, genetic counseling, contraception, abortion, and genetic therapies so that parents can make free and informed reproductive decisions that result in fewer disabilities in the next generation. Some disability activists would call these policies eugenic, but society may have a legitimate interest in whether children are born healthy or disabled, leading it to subsidize the birth of healthy children, without actually outlawing or imposing particular genetic modifications.

When discussing the morality of genetic enhancements, it is useful to be aware of the distinction between enhancements that are intrinsically beneficial to the child or society on the one hand, and, on the other, enhancements that provide a merely positional advantage to the child. For example, health, cognitive abilities, and emotional well-being are valued by most people for their own sake. It is simply nice to be healthy, happy and to be able to think well, quite independently of any other advantages that come from possessing these attributes. By contrast, traits such as attractiveness, athletic prowess, height, and assertiveness seem to confer benefits that are mostly positional, i.e. they benefit a person by making her more competitive (e.g. in sports or as a potential mate), at the expense of those with whom she will compete, who suffer a corresponding disadvantage from her enhancement. Enhancements that have only positional advantages ought to be de-emphasized, while enhancements that create net benefits ought to be encouraged.

It is sometimes claimed that the use of germinal choice technologies would lead to an undesirable uniformity of the population. Some degree of uniformity is desirable and expected if we are able to make everyone congenitally healthy, strong, intelligent, and attractive. Few would argue that we should preserve cystic fibrosis because of its contribution to diversity. But other kinds of diversity are sure to flourish in a society with germinal choice, especially once adults are able to adapt their own bodies according to their own aesthetic tastes. Presumably most Asian parents will still choose to have children with Asian features, and if some parents choose genes that encourage athleticism, others may choose genes that correlate with musical ability.

It is unlikely that germ-line genetic enhancements will ever have a large impact on the world. It will take a minimum of forty or fifty years for the requisite technologies to be developed, tested, and widely applied and for a significant number of enhanced individuals to be born and reach adulthood. Before this happens, more powerful and direct methods for individuals to enhance themselves will probably be available, based on nanomedicine, artificial intelligence, uploading, or somatic gene therapy. (Traditional eugenics, based on selecting who is allowed to reproduce, would have even less prospect of avoiding preemptive obsolescence, as it would take many generations to deliver its purported improvements.)

Aren’t these future technologies very risky? Could they even cause our extinction?

Yes, and this implies an urgent need to analyze the risks before they materialize and to take steps to reduce them. Biotechnology, nanotechnology, and artificial intelligence pose especially serious risks of accidents and abuse. [See also “If these technologies are so dangerous, should they be banned? What can be done to reduce the risks?”]

One can distinguish between, on the one hand, endurable or limited hazards, such as car crashes, nuclear reactor meltdowns, carcinogenic pollutants in the atmosphere, floods, volcano eruptions, and so forth, and, on the other hand, existential risks – events that would cause the extinction of intelligent life or permanently and drastically cripple its potential. While endurable or limited risks can be serious – and may indeed be fatal to the people immediately exposed – they are recoverable; they do not destroy the long-term prospects of humanity as a whole. Humanity has long experience with endurable risks and a variety of institutional and technological mechanisms have been employed to reduce their incidence. Existential risks are a different kind of beast. For most of human history, there were no significant existential risks, or at least none that our ancestors could do anything about. By definition, of course, no existential disaster has yet happened. As a species we may therefore be less well prepared to understand and manage this new kind of risk. Furthermore, the reduction of existential risk is a global public good (everybody by necessity benefits from such safety measures, whether or not they contribute to their development), creating a potential free-rider problem, i.e. a lack of sufficient selfish incentives for people to make sacrifices to reduce an existential risk. Transhumanists therefore recognize a moral duty to promote efforts to reduce existential risks.

The gravest existential risks facing us in the coming decades will be of our own making. These include:

Destructive uses of nanotechnology. The accidental release of a self-replicating nanobot into the environment, where it would proceed to destroy the entire biosphere, is known as the “gray goo scenario”. Since molecular nanotechnology will make use of positional assembly to create non-biological structures and to open new chemical reaction pathways, there is no reason to suppose that the ecological checks and balances that limit the proliferation of organic self-replicators would also contain nano-replicators. Yet, while gray goo is certainly a legitimate concern, relatively simple engineering safeguards have been described that would make the probability of such a mishap almost arbitrarily small (Foresight 2002). Much more serious is the threat posed by nanobots deliberately designed to be destructive. A terrorist group or even a lone psychopath, having obtained access to this technology, could do extensive damage or even annihilate life on earth unless effective defensive technologies had been developed beforehand (Center for Responsible Nanotechnology 2003). An unstable arms race between nanotechnic states could also result in our eventual demise (Gubrud 2000). Anti-proliferation efforts will be complicated by the fact that nanotechnology does not require difficult-to-obtain raw materials or large manufacturing plants, and by the dual-use functionality of many of the basic components of destructive nanomachinery. While a nanotechnic defense system (which would act as a global immune system capable of identifying and neutralizing rogue replicators) appears to be possible in principle, it could turn out to be more difficult to construct than a simple destructive replicator. This could create a window of global vulnerability between the potential creation of dangerous replicators and the development of an effective immune system. It is critical that nano-assemblers do not fall into the wrong hands during this period.

Biological warfare. Progress in genetic engineering will lead not only to improvements in medicine but also to the capability to create more effective bioweapons. It is chilling to consider what would have happened if HIV had been as contagious as the virus that causes the common cold. Engineering such microbes might soon become possible for increasing numbers of people. If the RNA sequence of a virus is posted on the Internet, then anybody with some basic expertise and access to a lab will be able to synthesize the actual virus from this description. A demonstration of this possibility was offered by a small team of researchers from New York University at Stony Brook in 2002, who synthesized the polio virus (whose genetic sequence is on the Internet) from scratch and injected it into mice who subsequently became paralyzed and died.

Artificial intelligence. No threat to human existence is posed by today’s AI systems or their near-term successors. But if and when superintelligence is created, it will be of paramount importance that it be endowed with human-friendly values. An imprudently or maliciously designed superintelligence, with goals amounting to indifference or hostility to human welfare, could cause our extinction. Another concern is that the first superintelligence, which may become very powerful because of its superior planning ability and because of the technologies it could swiftly develop, would be built to serve only a single person or a small group (such as its programmers or the corporation that commissioned it). While this scenario may not entail the extinction of literally all intelligent life, it nevertheless constitutes an existential risk because the future that would result would be one in which a great part of humanity’s potential had been permanently destroyed and in which at most a tiny fraction of all humans would get to enjoy the benefits of posthumanity. [See also “Will posthumans or superintelligent machines pose a threat to humans who aren’t augmented?”]

Nuclear war. Today’s nuclear arsenals are probably not sufficient to cause the extinction of all humans, but future arms races could result in even larger build-ups. It is also conceivable that an all-out nuclear war would lead to the collapse of modern civilization, and it is not completely certain that the survivors would succeed in rebuilding a civilization capable of sustaining growth and technological development.

Something unknown. All the above risks were unknown a century ago and several of them have only become clearly understood in the past two decades. It is possible that there are future threats of which we haven’t yet become aware.

For a more extensive discussion of these and many other existential risks, see Bostrom (2002).

Evaluating the total probability that some existential disaster will do us in before we get the opportunity to become posthuman can be done by various direct or indirect methods. Although any estimate inevitably includes a large subjective factor, it seems that to set the probability to less than 20% would be unduly optimistic, and the best estimate may be considerably higher. But depending on the actions we take, this figure can be raised or lowered.

References:

Bostrom, N. “Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards,” Journal of Evolution and Technology. Vol. 9 (2002). http://www.nickbostrom.com/existential/risks.html

Center for Responsible Nanotechnology. “Dangers of Nanotechnology” (2003). http://www.crnano.org/dangers.htm

Foresight Institute. “Foresight Guidelines on Molecular Nanotechnology, version 3.7” (2000). http://www.foresight.org/guidelines/current.html

Gubrud, M. “Nanotechnology and International Security,” Fifth Foresight Conference on Molecular Nanotechnology. (1997) http://www.foresight.org/Conferences/MNT05/Papers/Gubrud/index.html

Wimmer, E. et al. “Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template,” Science, Vol. 257, No. 5583, (2002), pp. 1016-1018

If these technologies are so dangerous, should they be banned? What can be done to reduce the risks?

The position that we ought to relinquish research into robotics, genetic engineering, and nanotechnology has been advocated in an article by Bill Joy (2000). Joy argued that some of the future applications of these technologies are so dangerous that research in those fields should be stopped now. Partly because of Joy’s previously technophiliac credentials (he was a software designer and a cofounder of Sun Microsystems), his article, which appeared in Wired magazine, attracted a great deal of attention.

Many of the responses to Joy’s article pointed out that there is no realistic prospect of a worldwide ban on these technologies; that they have enormous potential benefits that we would not want to forgo; that the poorest people may have a higher tolerance for risk in developments that could improve their condition; and that a ban may actually increase the dangers rather than reduce them, both by delaying the development of protective applications of these technologies, and by weakening the position of those who choose to comply with the ban relative to less scrupulous groups who defy it.

A more promising alternative than a blanket ban is differential technological development, in which we would seek to influence the sequence in which technologies developed. On this approach, we would strive to retard the development of harmful technologies and their applications, while accelerating the development of beneficial technologies, especially those that offer protection against the harmful ones. For technologies that have decisive military applications, unless they can be verifiably banned, we may seek to ensure that they are developed at a faster pace in countries we regard as responsible than in those that we see as potential enemies. (Whether a ban is verifiable and enforceable can change over time as a result of developments in the international system or in surveillance technology.)

In the case of nanotechnology, the desirable sequence of development is that nanotech immune systems and other defensive measures be deployed before offensive capabilities become available to many independent powers. Once a technology is shared by many, it becomes extremely hard to prevent further proliferation. In the case of biotechnology, we should seek to promote research into vaccines, anti-viral drugs, protective gear, sensors, and diagnostics, and to delay as long as possible the development and proliferation of biological warfare agents and the means of their weaponization. For artificial intelligence, a serious risk will emerge only when capabilities approach or surpass those of humans. At that point one should seek to promote the development of friendly AI and to prevent unfriendly or unreliable AI systems.

Superintelligence is an example of a technology that seems especially worth promoting because it can help reduce a broad range of threats. Superintelligent systems could advise us on policy and make the progress curve for nanotechnology steeper, thus shortening the period of vulnerability between the development of dangerous nanoreplicators and the deployment of effective defenses. If we have a choice, it seems preferable that superintelligence be developed before advanced nanotechnology, as superintelligence could help reduce the risks of nanotechnology but not vice versa. Other technologies that have wide risk-reducing uses include intelligence augmentation, information technology, and surveillance. These can make us smarter individually and collectively or make enforcement of necessary regulation more feasible. A strong prima facie case therefore exists for pursuing these technologies as vigorously as possible. Needless to say, we should also promote non-technological developments that are beneficial in almost all scenarios, such as peace and international cooperation.

In confronting the hydra of existential, limited and endurable risks glaring at us from the future, it is unlikely that any one silver bullet will provide adequate protection. Instead, an arsenal of countermeasures will be needed so that we can address the various risks on multiple levels.

The first step to tackling a risk is to recognize its existence. More research is needed, and existential risks in particular should be singled out for attention because of their seriousness and because of the special nature of the challenges they pose. Surprisingly little work has been done in this area (but see e.g. Leslie (1996), Bostrom (2002), and Rees (2003) for some preliminary explorations). The strategic dimensions of our choices must be taken into account, given that some of the technologies in questions have important military ramifications. In addition to scholarly studies of the threats and their possible countermeasures, public awareness must be raised to enable a more informed debate of our long-term options.

Some of the lesser existential risks, such as an apocalyptic asteroid impact or the highly speculative scenario involving something like the upsetting of a metastable vacuum state in some future particle accelerator experiment, could be substantially reduced at relatively small expense. Programs to accomplish this – e.g. an early detection system for dangerous near-earth objects on potential collation course with Earth, or the commissioning of advance peer review of planned high-energy physics experiments – are probably cost-effective. However, these lesser risks must not deflect attention from the more serious concern raised by more probable existential disasters [see “Aren’t these future technologies very risky? Could they even cause our extinction?”].

In light of how superabundant the human benefits of technology can ultimately be, it matters less that we obtain all of these benefits in their precisely most optimal form, and more that we obtain them at all. For many practical purposes, it makes sense to adopt the rule of thumb that we should act so as to maximize the probability of an acceptable outcome, one in which we attain some (reasonably broad) realization of our potential; or, to put it in negative terms, that we should act so as to minimize net existential risk.

References:

Bostrom, N. “Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards,” Journal of Evolution and Technology. Vol. 9 (2002). http://www.nickbostrom.com/existential/risks.html

Joy, B. “Why the Future Doesn’t Need Us”. Wired, 8:04 (2000). http://www.wired.com/wired/archive/8.04/joy_pr.html

Leslie, J. The End of the World: The Ethics and Science of Human Extinction. (London: Routledge, 1996).

Rees, M. Our Final Hour. (New York: Basic Books, 2003).

Shouldn’t we concentrate on current problems such as improving the situation of the poor, rather than putting our efforts into planning for the “far” future?

We should do both. Focusing solely on current problems would leave us unprepared for the new challenges that we will encounter.

Many of the technologies and trends that transhumanists discuss are already reality. Biotechnology and information technology have transformed large sectors of our economies. The relevance of transhumanist ethics is manifest in such contemporary issues as stem cell research, genetically modified crops, human genetic therapy, embryo screening, end of life decisions, enhancement medicine, information markets, and research funding priorities. The importance of transhumanist ideas is likely to increase as the opportunities for human enhancement proliferate.

Transhuman technologies will tend to work well together and create synergies with other parts of human society. For example, one important factor in healthy life expectancy is access to good medical care. Improvements in medical care will extend healthy, active lifespan – “healthspan” – and research into healthspan extension is likely to benefit ordinary care. Work on amplifying intelligence has obvious applications in education, decision-making, and communication. Better communications would facilitate trade and understanding between people. As more and more people get access to the Internet and are able to receive satellite radio and television broadcasts, dictators and totalitarian regimes may find it harder to silence voices of dissent and to control the information flow in their populations. And with the Internet and email, people discover they can easily form friendships and business partnerships in foreign countries. A world order characterized by peace, international cooperation, and respect for human rights would much improve the odds that the potentially dangerous applications of some future technologies can be controlled and would also free up resources currently spent on military armaments, some of which could then hopefully be diverted to improving the condition of the poor. Nanotechnological manufacturing promises to be both economically profitable and environmentally sound. Transhumanists do not have a patent solution to achieve these outcomes, any more than anybody else has, but technology has a huge role to play.

An argument can be made that the most efficient way of contributing to making the world better is by participating in the transhumanist project. This is so because the stakes are enormous – humanity’s entire future may depend on how we manage the coming technological transitions – and because relatively few resources are at the present time being devoted to transhumanist efforts. Even one extra person can still make a significant difference here.

Will extended life worsen overpopulation problems?

Population increase is an issue we would ultimately have to come to grips with even if healthy life-extension were not to happen. Leaving people to die is an unacceptable solution.

A large population should not be viewed simply as a problem. Another way of looking at the same fact is that it means that many persons now enjoy lives that would not have been lived if the population had been smaller. One could ask those who complain about overpopulation exactly which people’s lives they would have preferred should not have been led. Would it really have been better if billions of the world’s people had never existed and if there had been no other people in their place? Of course, this is not to deny that too-rapid population growth can cause crowding, poverty, and the depletion of natural resources. In this sense there can be real problems that need to be tackled.

How many people the Earth can sustain at a comfortable standard of living is a function of technological development (as well as of how resources are distributed). New technologies, from simple improvements in irrigation and management, to better mining techniques and more efficient power generation machinery, to genetically engineered crops, can continue to improve world resource and food output, while at the same time reducing environmental impact and animal suffering.

Environmentalists are right to insist that the status quo is unsustainable. As a matter of physical necessity, things cannot stay as they are today indefinitely, or even for very long. If we continue to use up resources at the current pace, without finding more resources or learning how to use novel kinds of resources, then we will run into serious shortages sometime around the middle of this century. The deep greens have an answer to this: they suggest we turn back the clock and return to an idyllic pre-industrial age to live in sustainable harmony with nature. The problem with this view is that the pre-industrial age was anything but idyllic. It was a life of poverty, misery, disease, heavy manual toil from dawn to dusk, superstitious fears, and cultural parochialism. Nor was it environmentally sound – as witness the deforestation of England and the Mediterranean region, desertification of large parts of the middle east, soil depletion by the Anasazi in the Glen Canyon area, destruction of farm land in ancient Mesopotamia through the accumulation of mineral salts from irrigation, deforestation and consequent soil erosion by the ancient Mexican Mayas, overhunting of big game almost everywhere, and the extinction of the dodo and other big featherless birds in the South Pacific. Furthermore, it is hard to see how more than a few hundred million people could be maintained at a reasonable standard of living with pre-industrial production methods, so some ninety percent of the world population would somehow have to vanish in order to facilitate this nostalgic return.

Transhumanists propose a much more realistic alternative: not to retreat to an imagined past, but to press ahead as intelligently as we can. The environmental problems that technology creates are problems of intermediary, inefficient technology, of placing insufficient political priority on environmental protection as well as of a lack of ecological knowledge. Technologically less advanced industries in the former Soviet-bloc pollute much more than do their advanced Western counterparts. High-tech industry is typically relatively benign. Once we develop molecular nanotechnology, we will not only have clean and efficient manufacturing of almost any commodity, but we will also be able to clean up much of the mess created by today’s crude fabrication methods. This would set a standard for a clean environment that today’s traditional environmentalists could scarcely dream of.

Nanotechnology will also make it cheaper to colonize space. From a cosmic point of view, Earth is an insignificant speck. It has sometimes been suggested that we ought to leave space untouched in its pristine glory. This view is hard to take seriously. Every hour, through entirely natural processes, vast amounts of resources – millions of times more than the sum total of what the human species has consumed throughout its career – are transformed into radioactive substances or wasted as radiation escaping into intergalactic space. Can we not think of some more creative way of using all this matter and energy?

Even with full-blown space colonization, however, population growth can continue to be a problem, and this is so even if we assume that an unlimited number of people could be transported from Earth into space. If the speed of light provides an upper bound on the expansion speed then the amount of resources under human control will grow only polynomially (~ t3). Population, on the other hand, can easily grow exponentially (~ et). If that happens, then, since a factor that grows exponentially will eventually overtake any factor that grows polynomially, average income will ultimately drop to subsistence levels, forcing population growth to slow. How soon this would happen depends primarily on reproduction rates. A change in average life span would not have a big effect. Even vastly improved technology can only postpone this inevitability for a relatively brief time. The only long-term method of assuring continued growth of average income is some form of population control, whether spontaneous or imposed, limiting the number of new persons created per year. This does not mean that population could not grow, only that the growth would have to be polynomial rather than exponential.

Some additional points to consider:

In technologically advanced countries, couples tend to have fewer children, often below the replacement rate. As an empirical generalization, giving people increased rational control over their lives, especially through women’s education and participation in the labor market, causes couples to have fewer children.

If one took seriously the idea of controlling population by limiting life span, why not be more active about it? Why not encourage suicide? Why not execute anyone reaching the age of 75?

If slowing aging were unacceptable because it might lead to there being more people, what about efforts to cure cancer, reduce traffic deaths, or improve worker safety? Why use double standards?

When transhumanists say they want to extend lifespans, what they mean is that they want to extend healthspans. This means that the extra person-years would be productive and would add economic value to society. We can all agree that there would be little point in living an extra ten years in a state of dementia.

The world population growth rate has been declining for several decades. It peaked in 1970 at 2.1%. In 2003, it was 1.2%; and it is expected to fall below 1.0% around 2015. (United Nations 2002). The doomsday predictions of the so-called “Club of Rome” from the early 1970s have consistently turned out to be wrong.

The more people there are, the more brains there will be working to invent new ideas and solutions.

If people can look forward to a longer healthy, active life, they will have a personal stake in the future and will hopefully be more concerned about the long-term consequences of their actions.

References:

United Nations. The World Population Prospects: The 2002 Revision (United Nations: New York, 2002). http://www.gov.za/reports/2003/unpdhighlights.pdf

Is there any ethical standard by which transhumanists judge “improvement of the human condition”?

Transhumanism is compatible with a variety of ethical systems, and transhumanists themselves hold many different views. Nonetheless, the following seems to constitute a common core of agreement:

According to transhumanists, the human condition has been improved if the conditions of individual humans have been improved. In practice, competent adults are usually the best judges of what is good for themselves. Therefore, transhumanists advocate individual freedom, especially the right for those who so wish to use technology to extend their mental and physical capacities and to improve their control over their own lives.

From this perspective, an improvement to the human condition is a change that gives increased opportunity for individuals to shape themselves and their lives according to their informed wishes. Notice the word “informed”. It is important that people be aware of what they choose between. Education, discussion, public debate, critical thinking, artistic exploration, and, potentially, cognitive enhancers are means that can help people make more informed choices.

Transhumanists hold that people are not disposable. Saving lives (of those who want to live) is ethically important. It would be wrong to unnecessarily let existing people die in order to replace them with some new “better” people. Healthspan-extension and cryonics are therefore high on the transhumanist list of priorities. The transhumanist goal is not to replace existing humans with a new breed of super-beings, but rather to give human beings (those existing today and those who will be born in the future) the option of developing into posthuman persons.

The non-disposability of persons partially accounts for a certain sense of urgency that is common among transhumanists. On average, 150,000 men, women, and children die every day, often in miserable conditions. In order to give as many people as possible the chance of a posthuman existence – or even just a decent human existence – it is paramount that technological development, in at least some fields, is pursued with maximal speed. When it comes to life-extension and its various enabling technologies, a delay of a single week equals one million avoidable premature deaths – a weighty fact which those who argue for bans or moratoria would do well to consider carefully. (The further fact that universal access will likely lag initial availability only adds to the reason for trying to hurry things along.)

Transhumanists reject speciesism, the (human racist) view that moral status is strongly tied to membership in a particular biological species, in our case homo sapiens. What exactly does determine moral status is a matter of debate. Factors such as being a person, being sentient, having the capacity for autonomous moral choice, or perhaps even being a member of the same community as the evaluator, are among the criteria that may combine to determine the degree of somebody’s moral status (Warren 1997). But transhumanists argue that species-identity should be de-emphasized in this context. Transhumanists insist that all beings that can experience pain have some moral status, and that posthuman persons could have at least the same level of moral status as humans have in their current form.

References:

Warren, M.-A. Moral Status: Obligations to Persons and Other Living Things (Oxford: Oxford University Press, 1997).

What kind of society would posthumans live in?

Not enough information is available at the current time to provide a full answer to this question. In part, though, the answer is, “You decide.” The outcome may be influenced by the choices we make now and over the coming decades. In this respect, the situation is the same as in earlier epochs that had no transhuman possibilities: by becoming involved in political struggles against today’s social ills and injustices, we can help make tomorrow’s society better.

Transhumanism does, however, inform us about new constraints, possibilities, and issues, and it highlights numerous important leverage points for intervention, where a small application of resources can make a big long-term difference. For example, one issue that moves into prominence is the challenge of creating a society in which beings with vastly different orders of capabilities (such as posthuman persons and as-yet non-augmented humans) can live happily and peacefully together. Another concern that becomes paramount is the need to build a world order in which dangerous arms races can be prevented and in which the proliferation of weapons of mass destruction can be suppressed or at least delayed until effective defenses have been developed [see “Aren’t these future technologies very risky? Could they even cause our extinction?”].

The ideal social organization may be one that includes the possibility for those who so wish to form independent societies voluntarily secluded from the rest of the world, in order to pursue traditional ways of life or to experiment with new forms of communal living. Achieving an acceptable balance between the rights of such communities for autonomy, on the one hand, and the security concerns of outside entities and the just demands for protection of vulnerable and oppressed individuals inside these communities on the other hand, is a delicate task and a familiar challenge in political philosophy.

What types of society posthumans will live in depends on what types of posthumans eventually develop. One can project various possible developmental paths [see “What is a posthuman?”] which may result in very different kinds of posthuman, transhuman, and unaugmented human beings, living in very different sorts of societies. In attempting to imagine such a world, we must bear in mind that we are likely to base our expectations on the experiences, desires, and psychological characteristics of humans. Many of these expectations may not hold true of posthuman persons. When human nature changes, new ways of organizing a society may become feasible. We may hope to form a clearer understanding of what those new possibilities are as we observe the seeds of transhumanity develop.

Will posthumans or superintelligent machines pose a threat to humans who aren’t augmented?

Human society is always at risk from some group deciding to view another group of humans as fit for slavery or slaughter. To counteract such tendencies, modern societies have created laws and institutions, and endowed them with powers of enforcement, that act to prevent groups of citizens from assaulting one another. The efficacy of these institutions does not depend on all citizens having equal capacities. Modern, peaceful societies have large numbers of people with diminished physical or mental capacities along with many other people who may be exceptionally physically strong or healthy or intellectually talented in various ways. Adding people with technologically enhanced capacities to this already broad distribution of ability would not necessarily rip society apart or trigger genocide or enslavement.

A common worry is that inheritable genetic modifications or other human enhancement technologies would lead to two distinct and separate species and that hostilities would inevitably develop between them. The assumptions behind this prediction should be questioned. It is a common theme in fiction because of the opportunities for dramatic conflict, but that is not the same as social, political, and economic plausibility in the real world. It seems more likely that there would be a continuum of differently modified or enhanced individuals, which would overlap with the continuum of as-yet unenhanced humans. The scenario in which “the enhanced” form a pact and then attack “the naturals” makes for exciting science fiction but is not necessarily the most plausible outcome. Even today, the segment containing the tallest 90 percent of the population could, in principle, get together and kill or enslave the shorter decile. That this does not happen suggests that a well-organized society can hold together even if it contains many possible coalitions of people sharing some attribute such that, if they unified under one banner, would make them capable of exterminating the rest.

To note that the extreme case of a war between human and posthuman persons is not the most likely scenario is not to say that there are no legitimate social concerns about the steps that may take us closer to posthumanity. Inequity, discrimination, and stigmatization – against or on behalf of modified people – could become serious issues. Transhumanists would argue that these (potential) social problems call for social remedies. (One case study of how contemporary technology can change important aspects of someone’s identify is sex reassignment. The experiences of transsexuals show that some cultures still have work to do in becoming more accepting of diversity.) This is a task that we can begin to tackle now by fostering a climate of tolerance and acceptance towards those who are different from ourselves. We can also act to strengthen those institutions that prevent violence and protect human rights, for instance by building stable democratic traditions and constitutions and by expanding the rule of law to the international plane.

What about the hypothetical case in which someone intends to create, or turn themselves into, a being of so radically enhanced capacities that a single one or a small group of such individuals would be capable of taking over the planet? This is clearly not a situation that is likely to arise in the imminent future, but one can imagine that, perhaps in a few decades, the prospective creation of superintelligent machines could raise this kind of concern. The would-be creator of a new life form with such surpassing capabilities would have an obligation to ensure that the proposed being is free from psychopathic tendencies and, more generally, that it has humane inclinations. For example, a superintelligence should be built with a clear goal structure that has friendliness to humans as its top goal. Before running such a program, the builders of a superintelligence should be required to make a strong case that launching it would be safer than alternative courses of action.

References:

Yudkowsky, E. Creating Friendly AI: The Analysis and Design of Benevolent Goal Architectures. (2003, Version 1.0). http://www.singinst.org/CFAI/index.html

Technologies and Projections

Biotechnology, genetic engineering, stem cells, and cloning

What is molecular nanotechnology?

What is superintelligence?

What is virtual reality?

What is cryonics? Isn’t the probability of success too small?

What is uploading?

What is the singularity?

Transhumanism and Nature

Why do transhumanists want to live longer?

Isn’t this tampering with nature?

Will transhuman technologies make us inhuman?

Isn’t death part of the natural order of things?

Are transhumanist technologies environmentally sound?

Transhumanism as a Philosophical and Cultural Viewpoint

What are the philosophical and cultural antecedents of transhumanism?

What currents are there within transhumanism?

How does transhumanism relate to religion?

Won’t things like uploading, cryonics, and AI fail…

What kind of transhumanist art is there?